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Abstract
The success of humans in novel environments is partially supported by our ability to implement new task procedures via
instructions. This complex skill has been associated with the activity of control-related brain areas. Current models link
fronto-parietal and cingulo-opercular networks with transient and sustained modes of cognitive control, based on
observations during repetitive task settings or rest. The current study extends this dual model to novel instructed tasks. We
employed a mixed design and an instruction-following task to extract phasic and tonic brain signals associated with the
encoding and implementation of novel verbal rules. We also performed a representation similarity analysis to capture
consistency in task-set encoding within trial epochs. Our findings show that both networks are involved while following
novel instructions: transiently, during the implementation of the instruction, and in a sustained fashion, across novel trials
blocks. Moreover, the multivariate results showed that task representations in the cingulo-opercular network were more
stable than in the fronto-parietal one. Our data extend the dual model of cognitive control to novel demanding situations,
highlighting the high flexibility of control-related regions in adopting different temporal profiles.

Key words: cingulo-opercular network, cognitive control, fronto-parietal network, instructed behavior, mixed design

Introduction
Following verbal instructions could seem, at first glance, a triv-
ial aspect of human behavior, perhaps due to the easiness that
we often experiment when following commands in our daily
life. However, in continuously changing environments, the abil-
ity to use instructions to guide actions is essential for fit perfor-
mance. In fact, this skill defines a crucial distinction between
us and nonhuman apes: using language to share task proce-
dures freed us from slow trial-and-error learning (Cole, Laurent
et al. 2013). Despite the biological relevance of this complex,
flexible skill, some important aspects of its underlying neural
architecture remain unknown. In the present study, we
employed functional magnetic resonance imaging (fMRI) and
both univariate and multivariate approaches to describe the
transient and sustained control processes that allow us to fol-
low novel verbal instructions.

The transformation of an instruction into effective behavior
involves different processes. First, rules are semantically
encoded, and proactive control processes (Meiran 1996; Braver
2012) are deployed to build a representation of the task (the so-
called task-set) (Sakai 2008). This set can be activated in
advance (Meiran 2010; Ruge et al. 2013), biasing task-relevant
processing in sensorimotor regions (Sakai and Passingham
2003; Sakai and Passingham 2006; Ekman et al. 2012; González-
García et al. 2016, 2017) and thus, allowing us to prepare. Once
the task context has been instantiated, task-sets must be
implemented (Stocco et al. 2012), and reactive control processes
become crucial (Cole et al. 2017), as they allow the inhibition of
previously relevant action plans and the selection of target sti-
muli among possible distractors (Botvinick et al. 2001; Braver
2012). These proactive and reactive neural mechanisms, neces-
sary for successful task encoding and implementation, have
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received considerable attention in the broader literature of cog-
nitive control (Braver 2012; Palenciano et al. 2017).

Traditionally, the experimental approaches employed to
study cognitive control use rather repetitive paradigms, which
trigger proactive task-set reconfiguration with alternations
between few rules (e.g., task switching; Monsell 2003) and/or
reactive adjustments via conflict (e.g., the Stroop task; Stroop
1935). The evidence so far shows the involvement of a set of
frontal and parietal areas during the execution of a wide spec-
trum of effortful, controlled tasks (Duncan 2010), including
novel task execution (González-García et al. 2017). Due to the
tight functional coupling of these regions (Fox et al. 2005; Cole
and Schneider 2007; Seeley et al. 2007), they are often con-
sidered a unitary control brain network (viz., the Multiple
Demand Network or MDN; Duncan 2010; Fedorenko et al. 2013).
However, recent advances in experimental design and data
analysis have led to its subdivision into at least 2 components
—the cingulo-opercular and the fronto-parietal networks (CON
and FPN, respectively)—which seem to act at different, comple-
mentary time scales (Dosenbach et al. 2006, 2008). The CON is
comprised by regions that show both preparatory (cue-related)
and sustained (across multiple trials) activations (Dosenbach
et al. 2006), and has been associated with the proactive activa-
tion and maintenance of task-sets (Dosenbach et al. 2007).
Conversely, FPN regions present mainly transient, cue and
error-locked activity (Dosenbach et al. 2006) and their role has
been described in terms of phasic, reactive adjustment of
behavior (Dosenbach et al. 2007).

Support for this dual distinction comes not only from the
analysis of sustained and transient neural signals while partici-
pants perform different tasks (Dosenbach et al. 2006), but it has
also been confirmed when analyzing the information encoded
in multivoxel activity patterns in those regions (Crittenden
et al. 2016) and in functional connectivity data (both in resting
state and on task; Dosenbach et al. 2007; Crittenden et al. 2016).
Nevertheless, it has also been evidenced that such dual func-
tioning, and specially the sustained involvement of the CON, is
absent in certain task contexts (e.g., when stimuli contain
enough perceptual information to guide the response; Dubis
et al. 2016). Last, crucially to the current study, it remains
unknown whether there is a differential involvement of the 2
systems during goal-directed behavior in contexts of novelty.
As novel tasks entail higher control demands than practiced
ones (Norman and Shallice 1986), it is expected that they would
be associated with a greater recruitment of maintained and
transient processes mediated by CON and FPN, which could
highlight their distinction.

Research in recent years has explored the brain regions
underlying the encoding and implementation of instructions,
and the specific roles carried out by each one (Brass et al. 2017).
The findings so far support the involvement of the 2 main
nodes of the FPN, the inferior frontal sulcus (IFS) and the intra-
parietal sulcus (IPS) (Ruge and Wolfensteller 2010; Dumontheil
et al. 2011; Muhle-Karbe et al. 2017), as expected from
Dosenbach and colleagues’ model. The lateral prefrontal cortex
(LPFC) in general, and the IFS in particular, have been linked to
the encoding of new instructions (Hartstra et al. 2011; Demanet
et al. 2016), showing higher activity in novel compared with
practiced contexts (Cole et al. 2010; Ruge and Wolfensteller
2010). This region may be in charge, specifically, of the forma-
tion of novel stimulus–response mappings (when comparing
against the formation of stimulus–stimulus associations;
Hartstra et al. 2012). This supports its involvement in proactive
processes related to the creation of novel task-sets, and not in

the mere declarative maintenance of instructions in working
memory (Hartstra et al. 2012; Brass et al. 2017). The IPS has
shown, generally, a similar pattern (Ruge and Wolfensteller
2010; Dumontheil et al. 2011), although there is also evidence of
a less abstract, sensorimotor representation in this region
(Hartstra et al. 2012; Muhle-Karbe et al. 2014; González-García
et al. 2017). Importantly, the functional coupling of the IFS and
IPS with other brain regions contains fine-grained information
about the content of novel instructions (Cole, Reynolds, et al.
2013). These distributed mechanisms of task-set representation
also add evidence for the joint activation of fronto-parietal
regions as a coherent functional system.

On the other hand, the CON network consists of the dorsal
anterior cingulate (dACC), the anterior insula/frontal operculum
area (aI/fO) and the anterior prefrontal cortex (aPFC). In contrast
to the FPN, evidence of its involvement during instructed behav-
ior is scarce. The dACC has been associated, in this context, with
the reactive inhibition of irrelevant actions that interfere with the
proper response (Botvinick et al. 2001; Brass et al. 2009). However,
existing evidence does not yield strong support for a role of the
dACC or the aI/fO in the encoding and/or maintenance of new
instructed rules. The aPFC, in contrast, has been highlighted as a
key region in the construction of novel task-sets, but only when
rules are complex or abstract (Cole et al. 2010). Thus, the CON has
not shown, as a system, a consistent behavior as the one pre-
dicted from the dual model framework.

The differential support for the participation of the 2 networks
in novel instructed behavior could be due to different reasons. On
the one hand, the nature of the behaviors explored could weight
on transient mechanisms (FPN) to a higher extent than on sus-
tained ones (CON), which besides of being more resource con-
suming (Braver 2012), develop in a time scale that may not be
optimal in this context. In other words, the activity maintained in
CON areas could be maximally beneficial when the relevant rules
are stable in time (as in classic control paradigms), but not if
quick task-set reconfigurations take place in a trial-by-trial fash-
ion. In accordance with this idea, it has been proposed that reac-
tive mechanisms are key to potentiate flexibility in novel
instruction following (Cole et al. 2017). On the other hand, the evi-
dence to date is scarce in contexts where novel instructions are
embedded in designs aimed at isolating both control modes,
which by definition act at different temporal scales.

When employing fMRI mixed designs (Petersen and Dubis
2012), the combination of events and blocks allows for the dis-
ambiguation of transient and sustained neural signals. To date,
only one instructions study has been carried out using mixed
designs (Dumontheil et al. 2011), and it employed complex
practiced commands. These authors manipulated task-set
complexity and studied transient activations linked to the
encoding and implementation of instructions, while the sus-
tained activations were analyzed only during implementation.
Surprisingly, only 2 regions were involved in their sustained
results: the IFS and the aPFC. Thus, the equal involvement of
regions from both networks leaves open the role of the CON in
instructed task execution and more importantly, whether this
pattern applies to novel contexts.

We aimed to conduct an experiment which specifically tested
the involvement of the dual control system proposed by
Dosenbach et al. (2006, 2008) during novel, instructed behavior. To
do so, we adapted an instruction-following paradigm (González-
García et al. 2017) to an fMRI mixed design, manipulating the
experience with the instructions (novel vs. practiced) in different
blocks of trials. This allowed comparing novelty-related activity
patterns (i.e., sustained and phasic activations) against a control

2 | Cerebral Cortex

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhy273/5144876 by G

hent U
niversity user on 29 O

ctober 2018



practiced condition. Furthermore, we aimed to better characterize
the sustained activation profile associated with the CON. As the
standard univariate analyses employed in previous studies did
not help to clarify the information held by these networks, other
plausible hypotheses in addition to proactive control involvement
have been proposed (e.g., tonic attention maintenance; Coste and
Kleinschmidt 2016). To address this issue, we employed recent
multivariate techniques (Haynes and Rees 2006), an approach
that has been shown to be highly informative. For example, using
a combination of multivoxel pattern analysis (MVPA) and repre-
sentational similarity analysis (RSA) (Kriegeskorte et al. 2008),
Qiao et al. (2017) were able to characterize how FPN areas adap-
tively change the task-set being represented, and how this pro-
cess deals with interference from previous relevant rules. The
dual-network model would predict a better maintenance through
time of task-sets in CON, complementing the quick adjustment of
the information encoded across the FPN. Thus, we employed RSA
to assess whether the spatially distributed task representations
were more consistent over time in CON than in FPN areas.

Methods and Materials
Participants

A total of 37 students from the University of Granada, all right-
handed and with normal or corrected-to-normal vision were
recruited for the experiment (20 women, mean age = 21.13,
SD = 2.47). All of them signed a consent form approved by the
Ethics Committee of the University of Granada and received
payment (20–25€, according to their performance) or course
credits in exchange for their participation. Two participants
were excluded from the final sample due to excess of head
movement (>3mm). Sample size was selected according to rec-
ommendations for mixed designs (Petersen and Dubis 2012).

Apparatus and Stimuli

We used a total of 120 verbal instructions similar to those
employed by González-García et al. (2017). They were all com-
posed by a condition and the 2 responses associated with the
condition being true or false (e.g., “If there are 4 happy faces, press
L. If not, press A”). Half of the instructions referred to faces (their
gender—female, male—emotional expression -happy, sad-, or
both), whereas the remaining referred to letters (their type

-vowel, consonant-, color -blue, red-, or both). The instruction
could also specify the quantity of specific stimuli, their size, or
the spatial contiguity between them. Finally, the motor responses
indicated a left or right index button press (“press A” or “press L”,
respectively). Face and letter sets were equivalent in terms of
these parameters. We conducted a pilot behavioral study to
ensure that the difficulty was equivalent across the whole set.
Then, to shorten task duration for the fMRI protocol, we built up
six 100-instructions lists from the pool (again, equating face and
letter-related elements) and assigned them to the participants, so
each individual instruction was presented with the same fre-
quency across our sample.

For each instruction, we built 2 grids of target stimuli: one
fulfilling the condition specified (match) and the other one not
(mismatch). They all consisted of unique combinations of 4
faces and 4 letters, which were drawn from a pool of 16 pic-
tures: 8 face images (2 men and 2 women, 2 with happy
expression and 2 sad, each in 2 different sizes -large, small-)
from the Karolinska Directed Emotional Faces set (Lundqvist
et al. 1998) and 8 letter images (2 consonants and 2 vowels, 2
in red color and 2 in blue, each in 2 different sizes -large,
small-). Grids from face and letter instruction sets were built
in parallel (establishing an equivalence between gender-letter
type and emotion-color). Across the whole sample of partici-
pants, all instruction–stimuli (matching and mismatching
grids) and instruction–response combinations (“press A if true,
press L if false”; or the opposite) were employed.

The task was created with E-Prime 2.0 (Psychology Software
Tools, Pittsburgh, PA). Inside the scanner, it was projected onto
a screen visible through a mirror located on the head coil.

Procedure

Participants performed a task in which they implemented
novel and practiced verbal instructions referring to letters or
faces, inside the fMRI scanner. The timing of the whole task
was adapted to match the TR of the EPI sequence (2.21 s),
anchoring each event to the beginning of a scan acquisition,
due to requirements of the FIR analyses conducted (see fMRI:
Acquisition and Analysis). Each trial (Fig. 1) started with the
presentation of a verbal instruction (25.75°; encoding phase)
during 2.21 s (i.e., 1 TR), followed by a jittered interval with a
fixation cross (2.21–8.84 s, mean = 5.525 s). The grid of stimuli
(21°) then appeared for 2.21 s, where participants had to

Figure 1. Mixed-design behavioral paradigm.
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respond (implementation phase) using button boxes compati-
ble with the scanner environment. The following trial began
after a second jittered delay (with the same characteristics as
the previous one).

We were interested in 2 variables: the experience that the
participants had with the trials (new vs. practiced) and the cat-
egory of stimuli that the instructions referred to (faces vs. let-
ters), having 4 possible conditions: Faces/New, Letters/New,
Faces/Practiced, Letters/Practiced. As we employed a mixed
fMRI design for our task, we manipulated those variables
between blocks, for a total of 16 blocks (4 of each condition),
with 10 trials each. All blocks began with a cue indicating the
experience and category condition (2.21 s) followed by a jittered
interval (2.21–8.84 s, mean = 5.525 s), after which the first trial
began. Blocks lasted 154.7 s, and were followed and preceded
by pause periods of 66.3 s (also indicated by pause cues of
2.21 s). Importantly, pause duration was chosen to be long
enough to ensure a robust baseline for block-related activity.
The task was split into 4 runs, each composed of 4 blocks, one
per condition. We carefully counterbalanced the order of
blocks, ensuring that all of them were preceded and followed
by the others the same number of times. Runs lasted 17.05min,
and the whole task 67.3min.

Participants came to the laboratory approximately 24 h
before the fMRI session, and performed 10 repetitions of 2
blocks of 10 instruction-grid pairings each (i.e., Faces/Practiced
and Letter/Practiced blocks), which conformed the practiced
instructions. Feedback was administered after each trial in this
practice session, and learning was assessed in a prescanner
test, with a requirement of at least 85% correct responses to
continue the experiment. Across participants, all materials
were equally employed in new and practiced conditions.

fMRI: Acquisition and Analysis

MRI data was collected using a 3-T Siemens Trio scanner at the
Mind, Brain, and Behavior Research Center (CIMCYC, University
of Granada, Spain). We used a T2*-weighted Echo Planar
Imaging (EPI) sequence (TR = 2210ms, TE = 23ms, flip angle =
70°) to obtain the functional volumes. These consisted of 40
slices, obtained in descending order, with 2.3mm of thickness
(gap = 20%, voxel size = 3mm2). The 4 runs consisted of 468
volumes each. We also acquired a high-resolution anatomical
T1-weighted image (192 slices of 1mm, TR = 2500ms, TE =
3.69ms, flip angle = 7°, voxel size = 1mm3). Participants spent
approximately 90min inside the MRI scanner.

We used SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/
spm12/) to preprocess and analyze the data. The first 4 volumes
of each run were excluded to allow for stabilization of the sig-
nal. The remaining images were spatially realigned, time-
corrected and normalized to the MNI space (transformation
matrices were estimated from EPI images, and applied to them
in the same step). Finally, they were smoothed using an 8mm
FWHM Gaussian kernel. We built our experimental task on the
basis of a mixed design (Petersen and Dubis 2012). Therefore,
for each subject, we created a GLM including, simultaneously,
events (separately, encoding and execution phases) and block
regressors for each of the 4 conditions, to perform the main
univariate analysis of this data. Events were modeled using a
finite impulse response (FIR) basis set (9 stick functions,
encompassing 19.89 s—9TRs—following the onset of the
events), while blocks were convolved with the canonical hemo-
dynamic response function (HRF) (Visscher et al. 2003). We also
modeled the pause periods (HRF convolved) and the block/

pauses starting cues (FIR modeled), and included the errors
(boxcar functions with same duration as the full trials, con-
volved with the HRF) and 6 movement parameters as nuisance
regressors. A 756 s high pass filter was set, taking into account
block duration and the maximum time elapsed between events
of the same condition.

At the within-subject level of analysis, we conducted t-tests
comparing event regressors against the implicit baseline, time
bin by time bin, separately for each condition. T-tests were also
conducted to contrast blocks with pause periods (both collaps-
ing across conditions, and separately), and also to compare
between blocks of different conditions. At the group level, sepa-
rate analyses were carried out for the sustained and transient
components, in both cases correcting for multiple comparisons
using a P < 0.05 FWE cluster-wise criterion (from an initial
uncorrected P < 0.001). In the first case, we used one sample
t-tests with the subjects’ block contrast images obtained from
the first level analyses. For the transient activity, we included
the statistical maps obtained from the event contrasts into
2 ANOVAs (encoding and implementation), performed as full
factorial design in SPM12 (Hartstra et al. 2011, 2012) and includ-
ing Experience (novel, practiced), stimulus Category (faces,
letters), and Time (9 time bins) as factors. This SPM design was
chosen because it facilitates contrast specification, especially in
complex models such as the one employed here. Nonetheless,
all results were replicated with a repeated-measures ANOVA
also including a Subject factor, following an SPM flexible facto-
rial model (Glascher and Gitelman 2008). We assessed main
effects of experience and category, and their interaction with
time bin. In the interaction of experience with time bin during
the implementation stage, significant clusters were too large
and extended over several different areas, so we adopted a
stricter cluster-forming threshold (uncorrected P < 0.001) to
obtain smaller, anatomically more constrained clusters. Finally,
to establish the directionality of these effects, we extracted the
beta values of the significant clusters and compared the esti-
mated hemodynamic response (HDR) across conditions, both
plotting the data, and performing post hoc pairwise compari-
sons (Bonferroni corrected) with the SPSS software (SPSS 20.0
for Windows, SPSS, Armonk, NY).

We additionally performed nonparametric inference (based
on 10.000 permutations and cluster-forming threshold of P <
0.001) on sustained activity data, using the software SnPM
(http://www.sph.umich.edu/ni-stat/SnPM). We could not follow
this strategy with the transient activity analysis, as the
repeated-measures ANOVA design was too complex to imple-
ment with the software available. Nonetheless, it is noteworthy
that the block nonparametric results successfully replicated the
output from the parametric approach.

To further characterize these findings, we carried out 3 addi-
tional analyses. First, we performed a conjunction test (Nichols
et al. 2005) to assess the overlap between areas showing sus-
tained and transient (encoding and implementation) activity.
To do so, we thresholded (P < 0.05 FWE cluster-wise criterion)
the statistical maps obtained from the following contrasts of
interest: 1) t-test of novel versus practiced blocks, 2) main effect
of Experience during the encoding of instructions; 3) and inter-
action of Experience*Time during the implementation stage.
These 3 statistical maps were post hoc selected based on the
findings obtained from the analyses described above and our
hypothesis regarding the roles of the CON and the FPN. These
images, after being binarized, were used to assess the intersec-
tion of the contrasts. As a result, we obtained voxels signifi-
cantly activated in all 3 situations simultaneously.
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Next, we evaluated the congruency of our results with the
proposal of Dosenbach et al. (2008) of 2 subnetworks for cogni-
tive control. Specifically, we assessed the extent of overlap of
the regions showing sustained and transient activations in our
experiment with the CON and the FPN, respectively (Dosenbach
et al. 2008). For this, we built spherical 10-mm radius ROIs cen-
tered on the nodes of the CON (dACC [0, 31, 24], aPFC [−21, 43,
−10; 21, 43, −10], aI/fO [−35, 18, 3; 35, 18, 3]), and FPN (IFS [−41,
23, 29; 41, 23, 29], IPS [−37, −56, 41; 37, −56, 41]), as published in
Fedorenko et al. (2013). ROI definition, including sphere size
selection, was conducted following the parameters in the study
of Dumontheil et al. (2011), in order to facilitate comparisons.
The network templates were then overlaid against the thre-
sholded statistical maps that we obtained in our results (using
the same contrast images as in the conjunction analysis), after
which we assessed which ROIs were present in each map and
the percentage of voxels of each subnetwork involved in the
different contrasts (Woolgar et al. 2016). It is important to note,
however, the descriptive nature of our approach, as it did not
involve the computation of inference statistics. This was due to
the complexity of the mixed design analysis (which did not
allow obtaining equivalent homogeneous statistics from both
event and block-related signals). Nevertheless, the chosen pro-
cedure provided an informative comparison of the dual model
(Dosenbach et al. 2008) and the sustained and transient activa-
tions estimated in our study.

Finally, we conducted a multivariate analysis to study the
fine-grained distributed representation of instructions and their

consistency along trial epochs (i.e., from the encoding to imple-
mentation stages). Specifically, we aimed to test differences in
representation persistence between the 2 networks, and also
how novelty modulated this effect. To that end, we entered the
non-normalized and unsmoothed functional images into a
GLM similar to the specified above, with the exception that
blocks were not defined and event regressors were convolved
with the HRF. This modeling approach was selected because at
this point there was no risk of misattributing the signal from
transient and sustained components, and more importantly,
because it provided a single parameter image for each event
condition (instead of 9). The beta coefficient maps extracted (32
in total, corresponding to the encoding and implementation
phases of each condition and run) were used to build a 32 × 32
representational dissimilarity matrix (RDM) (using The
Decoding Toolbox; Hebart et al. 2014) for each FPN and CON ROI
(as defined above), which had previously been inverse-
normalized and coregistered to the participants’ native space.
In the RDMs, each column and row corresponded to a different
regressor, and each celli,j to the distance (computed as 1 −
Pearson correlation) between the multivariate activity pattern
associated with regressors i and j. Pearson correlation values
were first normalized using Fisher’s z-transformation. We
focused on the quadrant of the RDMs capturing the dissimilari-
ties between encoding and implementation of instructions, in
which the diagonal represented distances within different
stages of same condition trials, and the off-diagonal repre-
sented values of different condition trials (Fig. 2). We computed

Figure 2. Representational similarity analysis. (A) First, a representational dissimilarity matrix (RDM) was built using the data of each cingulo-opercular and fronto-

parietal region of interest. Each cell of the matrix indicates the dissimilarity between the representation of each pair of trial conditions at encoding and implementa-

tion stages. (B) The left lower quadrant was selected in each RDM. Within this quadrant, the diagonal (cells in blue) show dissimilarities between the encoding and

the implementation of same-condition trials, and the off-diagonal values (cells in orange) refer to different condition trials. Those values were averaged separately

and subtracted to compute the persistence index employed in the analysis.
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the average difference between off and on-diagonal values for
each ROI (González-García et al. 2018), as an index of represen-
tational consistency along time. Concretely, this index showed
how similar the patterns of activations at the implementation
and encoding stages of same condition were, in comparison
with different condition trials. An index of 0 means that the
information encoded in multivariate patterns was independent
between encoding and implementation, while higher values
reflect greater correspondence between the information encoded
in both phases. We first checked that the index was significantly
above 0 across regions using one-sample t-tests. As the aim of
this analysis was to assess whether the consistency index varied
between the FPN and the CON, we averaged the values of ROIs
pertaining to each system and performed a paired t-test between
them. Even when our main hypothesis-driven approach for this
analysis was to group the regions into 2 segregated control net-
works (Crittenden et al. 2016), we also wanted to explore differ-
ences that could arise among areas of the same component—as
there is no reason to assume that they all perform identical com-
putations. To assess this possibility, we conducted a repeated-
measures ANOVA within each network, with ROI as factor, which
was later qualified with planned comparisons, Bonferroni-corrected.
Finally, we obtained the consistency indexes separately for novel
and practiced trials, and explored this effect with a repeated-
measures ANOVA with Network and Experience as factors.

Results
Behavior

We analyzed the behavioral performance during the scanning
session using 2-way repeated-measures ANOVAs, with
Experience (new vs. practiced) and Category (faces vs. letters) as
factors. We found a significant effect of Experience in accuracy
(F1,34 = 51.12, P < 0.001, ηp

2 = 0.601), with better performance for
practiced (M = 94.7%, SD = 5.3) than for novel trials (M = 88.7%,
SD = 6.8). The effect of Category was also significant (F1,34 = 5.31,
P < 0.027, ηp

2 = 0.135), with better performance for faces
(M = 92.6%, SD = 6.0) than for letters (M = 90.9%; SD = 7.4%).
Finally, RT data from this session replicated the significant main
effect of Experience (F1,34 = 290.48, P < 0.001, ηp

2 = 0.895), and also
showed a significant interaction between Experience and
Category (F1,34 = 32.56, P < 0.001, ηp

2 = 0.489), with faster
responses to faces (M = 747.0ms, SD = 196.7ms) than letters
(M = 783.6ms, SD = 188.7ms) in practiced trials, and the opposite
pattern in novel ones (faces: M = 1047.7ms, SD = 183.7ms; letters:
M = 982.7ms; SD = 172.1ms). Finally, we performed 2 additional
ANOVAs on accuracy and RT data including Run as a factor, to
rule out possible fatigue effects on our behavioral measures.
Neither the main effect of Run (accuracy: F3102 = 1.99, P < 0.120,
ηp

2 = 0.055; RT: F3102 = 2.11, P < 0.104, ηp
2 = 0.058) nor its interac-

tion with Experience or Category were significant (Fs < 1.02,
Ps > 0.100). This was further confirmed with a Bayesian repeated-
measure ANOVA, in which both the main effect of Run and its
interactions showed a BF10 < 0.3, strongly supporting a null effect
of this variable and, thus, confirming that participants’ perfor-
mance was stable across the whole task.

fMRI

We first conducted a univariate analysis to assess sustained
and transient activity, with the goal of exploring the effect of
the experience with the task (new vs. practiced). As specified
before, we also carried out a multivariate analysis, focused on

the within-trial time scale, to study the consistency of multi-
voxel representation along phases of the task (encoding and
implementation).

Univariate Analysis
Transient activity. Event-locked activations were estimated using
a set of FIR functions, obtaining 9 parameters per regressor
defined at the within-subject level. Then, they were entered
into 2 separate ANOVAs: one to capture phasic activations
associated with the encoding of instructions, and the other for
their implementation. In both, we assessed the main effect of
Experience, and its interaction with Time.

During the encoding of instructions (Table 1 and Fig. 3), the
main effect of Experience was significant bilaterally in the dor-
solateral prefrontal cortex (DLPFC)—including the IFS—and
aPFC. To explore the directionality of this result, we extracted
the beta estimates for each conditions and time bin (averaged
across participants). Intriguingly, the HDR was more pro-
nounced for practiced compared with novel instructions in
both DLPFC clusters (Fig. 3). In the aPFC, beta values were also
higher in the practiced condition, but in that case the HDR did
not resemble the typical curve (Fig. 3), but showed a deactiva-
tion, less pronounced for practiced rules.

In contrast, a wide array of brain areas was differently
activated in novel and practiced trials during the implemen-
tation of instructions (Table 1), as assessed by the interaction
of Experience with Time (Fig. 4). As clusters were very large,
we used a stricter statistical threshold to explore smaller,
anatomically more accurate clusters (uncorrected cluster-
defining threshold of P < 0.0001; this threshold was also
employed to display the results in Fig. 4 and Table 1). In con-
trast to the encoding stage, almost all regions showed a high-
er HDR for novel than for practiced instructions, including
the IFS, the inferior frontal junction (IFJ), the IPL, and the aI/
fO (Fig. 4). On the other hand, the bilateral supramarginal
and superior temporal gyrus were more active in practiced
trials.

Sustained activity. We first aimed to detect areas showing sus-
tained activity through long task blocks in comparison with
rest, collapsing across all conditions. We did not observe any
significant results in this analysis, nor when we compared just
practiced blocks against baseline. On the other hand, sustained
activity in novel blocks (vs. baseline) was found in the right aI/
fO and bilaterally in the inferior parietal lobe (IPL), aPFC and
DLPFC—also involving the IFS (Fig. 5A and Table 2). DLPFC and
IPL were also significant when novel blocks were contrasted
against practiced ones (Fig. 5B), providing support for their role
for sustained control in new situations. Conversely, practiced
blocks elicited higher sustained activity than novel ones in the
ventromedial prefrontal cortex (vmPFC).

Conjunction Analysis
Results from our previous analyses suggested an overlap
between regions with stronger sustained activity during novel
blocks, and those with larger transient activity for the encoding
of practiced instructions, and the implementation of novel
ones. To quantify this observation, we performed an ad-hoc
conjunction analysis with the corresponding 3 statistical maps
obtained at the subject level (see fMRI: Acquisition and
Analysis). This test allowed us to confirm that one region, the
left IFS, was involved across the 3 situations (Fig. 6).
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Network comparison
We also assessed the extent to which our principal sustained
and transient results replicated previous findings regarding the

involvement of 2 differentiable networks for cognitive control
(Table 3): the CO and FP networks. Contrary to the framework
put forward by Dosenbach et al. (2008), only the right aI/fO

Table 1 Transient activity results.

Label ANOVA term Direction Peak coordinate Z value k

Encoding phase
Left aPFC Main effect P > N −36, 44, 8 5.44 155
Left DLPFC Main effect P > N −51, 20, 39 5.38 95
Right aPFC Main effect P > N 39, 47, 2 5.13 134
Right DLPFC Main effect P > N 48, 29, 29 4.64 91
Cerebellum (lobule VI) Interaction N > P −33, −43, −22 4.14 60

Implementation phase
Left LPFC Interaction N > P −45, 8, 29 7.61 430
Right LPFC Interaction N > P 54, 26, 26 7.12 295
SMA/preSMA Interaction N > P −3, 17, 53 6.86 177
Right SPL Interaction N > P 30, −55, 47 6.46 538
Left SPL/IPL Interaction N > P −24, −70, 44 6.11 516
Right fusiform gyrus Interaction N > P 48, −58, −13 5.86 225
Right aI/fO Interaction N > P 33, 23, −4 5.75 112
Left aI/fO Interaction N > P −33, 23, −4 5.55 79
Left Caudate Interaction P > N −21, 8, 26 5.43 57
Left SMG/STG Interaction P > N −54, −37, 23 5.39 394
Left BG/posterior insula Interaction N > P −33, −19, −1 5.35 104
Left fusiform gyrus Interaction N > P −39, −46, −22 5.12 110
Right SMG/STG Interaction P > N 60, −34, 32 5.08 178
Right BG/posterior insula Interaction – 30, −19, 5 4.89 113
Right MTG Interaction – 48, −34, −10 4.73 48
Left MTG Interaction – −48, −22, −4 4.68 27
Bilateral Caudate Main effect N > P 3, 8, −4 4.47 106
Right fusiform/PHG Main effect N > P 27, −31, −22 4.11 75

Note: The ANOVA terms refer to the main effect of Experience and the interaction of Experience with Time (see Methods and Materials sections). The direction indi-

cates whether the activity was higher in novel (N) or in practiced (P) conditions, while hyphens designate regions with no clear directionality (because the significant

interaction term is driven not by heightened activation but by different timing of the response). aPFC = anterior prefrontal cortex; DLPFC = dorsolateral prefrontal cor-

tex; LPFC = lateral prefrontal cortex; SMA = supplementary motor area; preSMA = presupplementary motor area; SPL = superior parietal lobe; IPL = inferior parietal

lobe; al/fO = anterior insula/frontal operculum; SMG = supramarginal gyrus; STG =superior temporal gyrus; BG = basal ganglia; MTG = middle temporal gyrus; PHG =

parahipocampal gyrus.

Figure 3. Results from the encoding stage ANOVA. Yellow clusters show regions where the main effect of Experience was significant. Insets show the hemodynamic

response (beta values extraction) for novel (blue) and practiced (green) trials. Asterisks indicate that the conditions differed significantly (P < 0.05, Bonferroni cor-

rected) in the corresponding time bin.

Transient and Sustained Mechanisms Supporting Instructed Behavior Palenciano et al. | 7
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/advance-article-abstract/doi/10.1093/cercor/bhy273/5144876 by G
hent U

niversity user on 29 O
ctober 2018



showed sustained activity throughout novel blocks, which just
constituted 3.18% of the voxels of the CON template. Moreover,
areas included in the FPN (bilateral IPS and the right IFS, involv-
ing a 42.92% of voxels of this network) were also present in the
sustained activity maps.

At a transient time scale, the right aPFC, from the CON
(4.69% of voxels), and the bilateral IFS and left IPS, from the FPN
(18.61% of voxels), were involved during encoding of practiced
instructions. During the implementation of novel ones, all ROIs
of the FPN coincided with active clusters (although in an extent
of just the 16.77% of the voxels), but were also accompanied by
bilateral aI/fO from the CON (being, in this case, a 27.40% of
CON voxels). Overall, the picture emerging from these compari-
sons is a mixture of CON and FPN involvement across both
temporal modes of functioning.

Representational similarity analysis
In addition to the temporal profiles (transient vs. sustained)
described above, differences between the CON and FPN may
arise at a shorter time scale, within trial epochs. We explored
this using RSA focused on the CON and FPN ROIs. We com-
puted a consistency index associated with the maintenance of
multivoxel representation of instructions from encoding to
implementation stages (Qiao et al. 2017; see Fig. 2), in which
larger values indicated a higher consistency along time (see
fMRI: Acquisition and Analysis). As expected, in all the regions
examined, this index was significantly above 0 (all Ps < 0.001 in
one-sample t-tests) showing a correspondence between the
information represented during novel instruction encoding and
implementation. However, due to the temporal proximity of
the source signal (consecutive events) this result could merely

Figure 4. Results from the implementation stage ANOVA. Violet clusters show regions where the interaction of Experience and Time was significant. Insets show the

hemodynamic response (beta values extraction) for novel (blue) and practiced (green) trials. Asterisks indicate that the conditions differed significantly (P < 0.05,

Bonferroni corrected) in the corresponding time bin.

Figure 5. Sustained activity results. (A) Areas found in the t-test of Novel blocks against baseline. (B) Results from the contrast of novel versus practiced blocks.

Clusters in blue show higher sustained activation in novel compared with practiced blocks, while the reverse is shown in green.
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reflect the sluggish nature of BOLD response, although the jit-
tered interval added between the encoding and the implemen-
tation should prevent or minimize this problem. In any case,
this potential confound does not affect our analysis as we only
focused in the relative differences in the index between both
networks.

We first collapsed across novel and practiced trials, and
observed that the CON’s consistency index was higher than
the FPN’s one (T34 = 9.34, P < 0.001), suggesting more persis-
tent task-set representations in the former network. We then
explored variations within ROIs of both subnetworks, with 2
additional repeated-measures ANOVAs. In both systems, the
effect of ROI was significant (CON: F4136 = 91.84, P < 0.001,
ηp

2 = 0.730; FPN: F3102 = 30.64, P < 0.001, ηp
2 = 0.474) and

planned comparisons showed that the differences were sta-
tistically significant between each pair of regions, except
when they involved left and right portions of the same area.
Within the CO subnetwork, the region showing the highest
consistency over time was the bilateral aPFC (left: M = 1.028,
SD = 0.207; right: M = 1.017, SD = 0.219), followed by the dACC

(M = 0.850, SD = 0.207) and, finally, the aI/fO (left: M = 0.669,
SD = 0.204; right: M = 0.672, SD = 0.171). On the other hand,
the bilateral IFS (left: M = 0.821, SD = 0.231; right: M = 0.776,
SD = 0.187) showed larger consistency than the IPS (left:
M = 0.623, SD = 0.177; right: M = 0.583, SD = 0.151) in the FPN.

Finally, to assess whether this pattern was modulated by
instruction novelty, we conducted an ANOVA with this vari-
able and Network as factors. As expected, the main effect of
Network was significant (F1,34 = 52.28, P < 0.001, ηp

2 = 0.606),
and importantly, so was the main effect of experience with

Table 2 Sustained activity results

Label Block labels Peak coordinate Z value k

Right IPL Novel > Baseline 45, −52, 41 6.03 340
Left IPL Novel > Baseline −42, −58, 47 5.27 330
Left MTG Novel > Baseline −54, −31, −10 5.48 122
Left aPFC/DLPFC Novel > Baseline −39, 47, 5 4.85 182
Right aPFC/DLPFC Novel > Baseline 39 53 −4 4.65 507
Bilateral SMA/preSMA Novel > Baseline −9 17 53 4.59 213
Right IFG/MTG Novel > Baseline 57, −25, −19 4.49 136
Right Cingulate gyrus Novel > Baseline 9, −28, 26 4.18 262
Left DLPFC/VLPFC Novel > Practiced −51, 20, 38 5.46 234
Right aPFC Novel > Practiced 39, 50, 5 4.37 142
Right IFJ Novel > Practiced 30, 11, 35 4.27 81
Left IPL Novel > Practiced −36, −61, 41 4.26 155
Right IPL Novel > Practiced 48, −49, 44 4.2 134
Left aPFC Novel > Practiced −45, 44, 14 4.16 143
Bilateral vmPFC Practiced > Novel 6, 47, −19 4.37 234

Note: IPL = inferior parietal lobe; MTG = middle temporal gyrus; aPFC = anterior prefrontal cortex; DLPFC = dorsolateral prefrontal cortex; SMA = supplementary

motor area; preSMA = presupplementary motor area; IFG = inferior frontal gyrus; MFG = middle frontal gyrus; LFPC = lateral prefrontal cortex; VLPFC = ventrolateral

prefrontal cortex; IFJ = inferior frontal junction; vmPFC = ventromedial prefrontal cortex.

Figure 6. Results from the conjunction analysis. In red are voxels surviving to

the conjunction test of (1) transient activity locked to practiced instructions

encoding; (2) transient activity locked to novel instructions implementation;

and (3) sustained activity maintained through novel blocks. Peak coordinates:

[−48, 20, 32], k = 63.

Table 3 Transient and sustained signals at cingulo-opercular and
fronto-parietal regions

Region Transient: encoding
(practiced > novel)

Transient:
implementation
(novel > practiced)

Sustained
(novel >
practiced)

Cingulo-opercular network
dACC – – –

Left
aPFC

– – –

Right
aPFC

X – –

Left
aI/fO

– X –

Right
aI/fO

– X X

Fronto-parietal network
Left
IFS

X X –

Right
IFS

X X X

Left
IPS

X X X

Right
IPS

– X X

Note: Crosses indicate the existence of overlap between the regions of interest of

CO and FP networks (Dumontheil et al. 2011; Fedorenko et al. 2013) and results

obtained for contrasts in the current whole-brain analysis. dACC = dorsal anterior

cingulate cortex; aPFC = anterior prefrontal cortex; aI/fO = anterior insula/frontal

operculum; IFS = inferior frontal sulcus; IPS = intraparietal sulcus.
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the task (F1,34 = 12.60, P = 0.001, ηp
2 = 0.270). Specifically, prac-

ticed instructions showed a higher consistency index than
novel ones (novel: M = 0.745, SD = 0.195; practiced: M = 0.836,
SD = 0.191), indicating that the experience facilitated a more
efficient task-set maintenance within trials. The interaction
term with Network was not significant, which suggests that
the increase in similarity along the trial epochs with practice
did not differ across CON and FPN regions.

Discussion
In this study we investigated which brain networks underpin
instruction following, and their fit within the dual control
model (Dosenbach et al. 2006, 2007, 2008). To do so, we adapted
a mixed design to a paradigm in which different novel and
practiced instructions had to be encoded and implemented,
and extracted the underlying transient and sustained brain sig-
nals. Our hypothesis was that novel instructions would recruit
the CON and the FPN to a higher extent than practiced ones:
the former proactively—transiently during instruction encod-
ing, and in a sustained fashion across trials—and the latter
reactively—linked to the implementation stage. Our results
showed that the transient involvement of different regions var-
ied depending on practice and the information stage (encoding
vs. implementation) of instructions. Moreover, regions from
both FPN and CON were involved both in the sustained mainte-
nance of activity during novel blocks and during transient rule
implementation. Multivariate patterns of activation in both
networks showed a consistent differentiation between CON
and FPN in how the information was maintained across the
encoding and implementation stages, as the former network
seems to hold instruction representations more consistently
along time, an effect that increases with practice.

The analysis of transient activations by means of FIR models
allowed to study how novelty influenced the regions engaged in
a phasic mode during complex verbal instruction processing.
In line with previous research (Ruge and Wolfensteller 2010;
Dumontheil et al. 2011; Muhle-Karbe et al. 2017) we found that
the IFS and the IPS, the main nodes of the FPN, were relevant at
this time scale. Phasic activity was also found in the CON, con-
cretely, in the aI/fO. In this sense, the whole pattern of regions
presenting transient activity fits with our predictions based on
Dosenbach’s model (Dosenbach et al. 2006). However, to better
understand these findings, it is important to consider the 2 dif-
ferent processes that unfold along the trial epoch. We studied
the encoding of instructions, more related with proactive prepa-
ration, and the subsequent implementation phase, where rules
were applied to concrete stimuli, closely linked to reactive
adjustments. During the initial encoding, no regions were tran-
siently more active for novel than for practiced instructions.
Conversely, the bilateral IFS was more active for practiced instruc-
tions than for novel ones. Later on, during the implementation,
the IFS was again recruited, together with the IPS, the aI/fO and
the preSMA. Importantly, here these regions showed larger activ-
ity for novel than practiced instructions, replicating previous find-
ings (Ruge and Wolfensteller 2010; González-García et al. 2017).

The increased recruitment of the IFS in practiced compared
novel instructions encoding may seem at odds with previous lit-
erature and our own predictions. Nonetheless, this finding may
reflect the difficulty of fully preparing novel complex instructions
during the encoding stage—in opposition with overly practiced
ones, which could automatically retrieve the proceduralized task-
set during this initial stage. In agreement with this, it has been
previously proposed that novel rule preparation culminates when

they are first implemented in behavior (Brass et al. 2009; Cole,
Laurent et al. 2013), an effect that may have been potentiated by
the increased complexity and abstraction of our instructions in
comparison with those used in previous research (Cole et al. 2010;
Ruge and Wolfensteller 2010). As a result, the IFS activity may
mediate practiced task-sets instauration and, as such, underlie a
better proactive preparation in this condition. This is supported
by the fact that this region has a relevant role in the preparation
to implement instructions, in comparison with mere memoriza-
tion demands (Demanet et al. 2016; Muhle-Karbe et al. 2017;
Bourguignon et al. 2018).

Importantly, our conjunction results confirmed that the
same left IFS cluster was present during the encoding of prac-
ticed instructions and the implementation of novel ones.
Hence, this region may underpin a preparatory process that
can take place at different moments: earlier when the instruc-
tion is known (practiced) and its pragmatic representation can
be retrieved, and later (i.e., when the stimuli are available)
when we face a novel task, and this representation must be
created from scratch. Nonetheless, which specific computa-
tions the IFS implements during this process is an open ques-
tion. Different proposals have been made in the literature:
binding of relevant stimuli and response parameters (Hartstra
et al. 2012), mediating the transformation of semantic informa-
tion into a pragmatic, action-oriented task representation (Ruge
and Wolfensteller 2010), or maintaining the task-set in an
active mode (Demanet et al. 2016), making it available for other
lower-level regions. However, whereas novel instructions prep-
aration seems to require the deployment of these 3 processes,
practiced ones do not, as they do not need to be rebuilt but
rather retrieved and updated. In light of our findings, therefore,
task-set maintenance seems to be the most suitable common
role underlying this region in both novel and practiced condi-
tions. This is further supported by studies recording single and
multiunit activity in monkeys’ LPFC (Freedman et al. 2001),
which reveal the role of this area in the maintenance of differ-
ent task-relevant information during delay periods.

Another remarkable set of results in the current study is the
involvement of other regions during instruction implementa-
tion, such as the IPS and the preSMA. As implementation
seems to rely to a high extent on reactive mechanisms, these
regions may be implementing online control adjustments upon
target presentation in novel trials, compensating for the less
efficient proactive preparation during the encoding stage. From
this perspective, the whole pattern of transient activations
could be interpreted in terms of an interplay between proactive
and reactive processes, which would depend on the novelty of
the instructions that govern behavior. This interpretation fits
with the balanced nature of proactive and reactive control
modes: situations that weight proactive mechanisms to a high-
er extent trigger less reactive control, and vise-versa (Braver
2012). Nonetheless, it is also important to note that the tempo-
ral profile of activation of these brain areas is highly flexible.
Whereas they have been linked to reactive functions (e.g., the
preSMA seems to mediate the inhibition of irrelevant stimulus–
response mappings in this context; Brass et al. 2009), patterns
of activation consistent with proactive preparation have also
been observed, such as increases of activity during encoding
and preparation intervals (Dumontheil et al. 2011; Hartstra
et al. 2011; Hartstra et al. 2012; Muhle-Karbe et al. 2014; Muhle-
Karbe et al. 2017).

An additional core goal of our study was to extract sus-
tained, block-wise activations to investigate whether a stable
pattern of activation was maintained in CON and FPN areas
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during the execution of novel, demanding tasks, as it has been
shown previously in more repetitive experimental settings
(Dosenbach et al. 2006). In accordance with our expectations,
blocks of new instructions were associated with a larger sus-
tained recruitment of frontal and parietal regions, when com-
paring against both pause periods and practiced blocks.
Nonetheless, the regions involved were more consistent with
the main nodes of the FPN: the bilateral IFS and the IPS. Only
the right aI/fO region and part of the aPFC, from the CON,
showed sustained activation in novel blocks. Accordingly,
when we explicitly tested the percentage of overlapping voxels
between 2 networks and our results, we found higher coher-
ence with the FPN. Our results aid to qualify the dual model of
control, showing that sustained activation patterns are not the
exclusive fingerprint of CON regions. In contexts of novelty,
when higher flexibility is needed, nodes of the FPN are also
recruited at this timescale, while sustained activity is restricted
to certain nodes of the CON. This result may seem at odds with
previous evidence. However, the nature of the behavior ana-
lyzed in our research departs considerably from the one cap-
tured by most of previous mixed-designed studies (Dosenbach
et al. 2006), as our experiment required the continuous building
and updating of novel complex task-sets. It has been argued
that the sustained activation across the CON underlies the
maintenance of relevant rules as long as they are needed
(Dosenbach et al. 2008). While this mechanism may be efficient
when the task remains the same, it may not be beneficial in
long blocks where rules change in a trial-by-trial fashion. Here,
the FPN may implement sustained control processes indepen-
dent of the specific task-set adopted on each trial. Due to the
role of this network in establishing the widest and most flexible
pattern of connectivity with other brain regions (Cole, Laurent
et al. 2013), one possibility is that sustained activity across FPN
regions implements some kind of tonic state of high efficiency
in information routing between domain-specific regions. This
view is supported by 2 different sources of evidence. First, task-
dependent variability in the sustained engagement of CON has
been previously reported, as in the case of perceptually driven
tasks (Dubis et al. 2016). Second, sustained activity in lateral
prefrontal and parietal cortices has also been found in studies
which also relied on task-set updating: during blocks in which
task switching was required (Marini et al. 2016), and while exe-
cuting distinct instructions (Dumontheil et al. 2011). Overall,
our findings highlight that both control networks, especially
FPN areas, display a rather general ability to switch between
phasic and tonic temporal modes depending on the nature of
the tasks to be accomplished.

The result of our conjunction test, in which we identified
common clusters at both phasic and tonic timescales, gains
again relevance at this point. The same left IFS cluster involved
transiently during the encoding of practiced instructions and
the implementation of novel ones, which we propose underlie
the maintenance of instructed task-sets, is also recruited in a
sustained fashion through novel blocks. The relationship
between the functions carried out at the 2 timescales is not
straightforward; nonetheless, it is unlikely that they coincide,
as this may result in an unnecessary redundancy across both
timescales. It could well be the case that this and other regions
perform distinct computations depending on temporal para-
meters, as previous neuroimaging data show that the LPFC, in
general, can adopt different temporal dynamics (Jimura et al.
2010; Braver 2012). Results of the current investigation indicate
that a demanding and rich task environment can recruit both
temporal modes of functioning of this area, and moreover, that

this profile is sensitive to the novelty of the situation. On the
one hand, this evidence highlights the flexible nature of this
brain region. On the other hand, such results could reflect an
organizational principle by which different cognitive computa-
tions are multiplexed in distinct temporal dynamics within
brain areas.

Finally, we also explored multivoxel activity patterns in
both networks’ nodes, obtaining results consistent with the
classic dual-network model (Dosenbach et al. 2008). Areas
within the CON represented task-sets more consistently over
trial epochs, that is, from encoding to implementation stages.
This result strongly supports the proposal that these regions
are in charge of maintaining information in a sustained, proac-
tive fashion even in the absence of maintained univariate acti-
vation. Moreover, we found that this effect was affected by the
experience with the trial: when the instructions were practiced,
the consistency of the representation was higher, suggesting a
possible mechanism by which the task representation gains in
fidelity as it is repeatedly used. Interestingly, a recent study
showed that task rule representation is more stable across the
pretarget epoch when the instruction must be memorized in
comparison with novel to-be-implemented ones (Muhle-Karbe
et al. 2017). Overall, these results agree with the idea that novel
trials require the semantic information of the instruction to be
transformed into an action-related representation, a process
that needs time to unfold and evolves up to target presenta-
tion. Moreover, this could explain why less reactive adjust-
ments may be deployed when practiced instructions are
translated into actions, as our results of transient activity dur-
ing the implementation show.

Further research is needed to connect the scarce findings
provided from this and other mixed design studies, and the
broader cognitive control literature. For example, a recent
study showed, employing MVPA, that task-sets were better
encoded (i.e., decoded with higher accuracy) in FPN than in
CON regions (Crittenden et al. 2016). These findings are not
incompatible with ours, as we used RSA and our analysis was
focused in the transference of rule representation between 2
temporal time points—and not in classification accuracies at
concrete time points of the task. Nonetheless, due to the deci-
sion of using a mixed design to extract transient and sus-
tained activations, our experiment was not optimized for
performing MVPA on our data. Previous research (González-
García et al. 2017) has shown that regions consistent with
both CON and FPN encode the relevant stimuli category of the
instructions, before its implementation. Future studies will
help to characterize, from this approach, which information is
contained in transient and sustained activation patterns—and
whether this is segregated between the 2 control networks.
Finally, it is important to highlight that the extent of novelty
entailed by each instruction was limited, given that the global
task structure remained the same throughout the experiment.
To study control mechanisms acting in novel contexts, we
generated a large amount of trials including unique task rules
and complex and also unique target combinations (Cole et al.
2010; Hartstra et al. 2011; González-García et al. 2017).
However, target categories (faces and letters) and motor
responses (employing the 2 index fingers) remained the same
across the whole task. While fixing these parameters allowed
us to exert experimental control, the complexity of novel
situations that humans face daily is far richer and more vari-
able. Future studies should aim for increasingly more ecologi-
cal paradigms, where the general task structure also varies in
a trial-wise fashion.
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Conclusions
The current study provides insights about the dual-network
perspective of cognitive control, expanding this model to novel
complex task contexts. Crucially, results indicate that even
when the 2 networks are functionally differentiated, both seem
to act at both tonic and phasic timescales during novel instruc-
tion processing. Furthermore, the division between proactive
and reactive control does not seem to be mapped in a straight-
forward way into these 2 networks. Future studies must be con-
ducted to further detail their contributions. Specifically, the
computations and information held at the sustained time scale
remain unknown, as also their relationship with mechanisms
that develop at a faster, transient scale. The expansion of mul-
tivariate decoding techniques could help to better disentangle
between the computational roles of both neural networks.
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